{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# BEE 4750 Homework 2: Dissolved Oxygen\n",
"\n",
"**Name**:\n",
"\n",
"**ID**:\n",
"\n",
"> **Due Date**\n",
">\n",
"> Friday, 09/22/23, 9:00pm\n",
"\n",
"## Overview\n",
"\n",
"### Instructions\n",
"\n",
"This assignment asks you to use a simulation model for dissolved oxygen\n",
"to assess the impacts of two wastewater streams, including minimum\n",
"treatment levels and the impact of uncertain environmental conditions.\n",
"You will also be asked to identify a minimum distance for the addition\n",
"of a third discharge stream.\n",
"\n",
"### Load Environment\n",
"\n",
"The following code loads the environment and makes sure all needed\n",
"packages are installed. This should be at the start of most Julia\n",
"scripts."
],
"id": "a629fb37-5911-4775-b704-40c4b8fb962e"
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import Pkg\n",
"Pkg.activate(@__DIR__)\n",
"Pkg.instantiate()"
],
"id": "2"
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"using Plots\n",
"using LaTeXStrings\n",
"using Distributions"
],
"id": "4"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Problems (Total: 40 Points)\n",
"\n",
"A river which flows at 6 km/d is receiving waste discharges from two\n",
"sources which are 15 km apart, as shown in\n",
"Figure 1. The oxygen\n",
"reaeration rate is 0.55 day-1, and the decay rates of CBOD\n",
"and NBOD are are 0.55 and 0.25 day-1, respectively. The\n",
"river’s saturated dissolved oxygen concentration is 10m g/L.\n",
"\n",
"\n",
"\n",
"Figure 1: Schematic of the system\n",
""
],
"attachments": {
"figures/river_diagram.png": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABa4AAAKPCAYAAACFNF0WAAAACXBIWXMAAC4jAAAuIwF4pT92AAAg\nAElEQVR4nOzdX4hsW34f9rXvHP2JENH0lYMTDLHSFyIHh0hRX/CDIDMmfV4MwSrsruTNMjjdT0bz\nErohBZqBEnQTjCboqZuAR+RF7H6omZc45DTozmPgtD0DIX7J7YwwCY4g6plIsSNLcoV17m+39qlT\nVb2ruv7s2vX5QHH69K3aVbV2nbprffdvrVWMx+MEAAAAAABt8ZEzAQAAAABAmwiuAQAAAABoFcE1\nAAAAAACtIrgGAAAAAKBVBNcAAAAAALSK4BoAAAAAgFYRXAMAAAAA0CqvnA4AAJooB72jlNJJSuko\nbge1h92nlB7iz9v+cPSgUQGAXaKvA+1SjMdjpwQAOqAc9E5TStfxTnJnur/ouyoHvcuU0nntVx/3\nh6PHJY5TdTAe+sPRJz5fuy0GcfmzcbzAG7lJKV0Z1LFp8Xl9FzT0h6M7JwC6QT+HddLXoW3iM3kc\nt/pFlOoCyl1/OLrp+olTcQ0A3VEPaI6WfFeTj8sdpdtFDhCdrEqnQ6Ny0DuOTuRhfzi6asFLWrmJ\noKByH+e2PtivKpMO4+/5cafloHfR1bahXcpB7zBCh5PaCyucJugM/ZwN24d+TtLXoWUaXESpPocn\n5aCXL8Tlz99C32O7RHANAB2Rqz3KQe+xGmCUg97BElVEkx2ko0UHdBODwq5XoLyp/dy5AUs56J1M\nDORuo3M887zGIPe89lm6zIFifzg6W/8rZl/FwO18Yko30CH6OVvR6X5O0tehZWZcRLmbcuGuukif\nL6KUXb54IrgGgG65q3VkFqoiik54pRoYLlPRtDeVSF2WA4GJjvNNkwFZLM1wVxsIHvgcsC7xvXX5\ngupLYLfo57Ay+jq0yZSljC7iM/nBBbr47F5G1X+KiycPXay8/qgFrwEAWJ372pEOFzxqNRB7rFXV\nLLLO3+Rxcsf+fv5dabHTWvXq3aJVRNFx/jSldNbl6YtsRx6wxQDvTe07J1fHvXZKoNP0c1glfR1a\nISqtq9A6f0d9miuoZ80qyb+Pz+tF7deXXTybgmsA6Jb6AGrRwVh1/7v6cSYqlJo4qh2H3VU/70tt\n/JKn2e7DpjFsVgzuPp9SlfSpzRih8/RzWCV9HdriNm45qH7d9KJYLA9SfRcdRh+pUwTXANAhE6HN\notNfq877/bLHmRj8GdDttnpFmSoiti6vH1oOem9q07JTfM98Mq8qCegO/RxWTF+HVogK6n5chF90\nJkf9s7vMLJJWs8Y1AHTPfXTED2KjmGc3DpoxELuLzs/xAhvyLLRhUeyafVzboX3y8fcxdfPFlSy5\nLWJdzOr5quDrMZ4n3263Oe03XuNpvL76ObmvtcWmBlZb3+Qu1u87nXPO7uKc7fzmWLX3elL7d3Af\n04+f/Uw2aKv7WCdx4bZq2eeyev7H2DxLlRvsn53p56QN9nV2oZ+T9HU+oK+jr1O35Hl+yQW91ivG\n43HX3hMA7LWJjT36TTpZ5aB3Huui5av9H0/8LneiiiZtWg56ZW3TpE9mdb7i2KcLrE/5EO9l4cFW\nbeOdkwZ3T9H5u5pcciAGvW9mP2ymZzf6mbLByjwP0cFfa6VXOeh9Xp2fpud/xc9/vsBafTcRYi5c\ncVsOek+d4WXe56KPr93/aff3ic2dJjX5/JzHv/kmA/Cb+Hw3CXra+Lk8j8/lzPP90nMKtNsu9HPS\nBvs6u9DPSfo6s55/7X2dTfdzkr7OVnS576PiGgC6p95JO2q44/609RrfW/+xYSftaZO0ZzqLkwO5\nar3Jemf8qDYIy/d9Ww56C02fiyqnNxOd3Kp6pf5cx7Xqinc/l4Pe0mHohLmd5ugwv5mokLifOG9V\nFdVB/PymHPTO1lxt+lCdozzY2FT104z2eKit+5eiHY5r93lXIRNtsisbZVVtezQxkHuofWYOJ9Zz\nfU+0VTlRGfQQn+/65+5koq1O4t/SvMCllZ/LagAM7LVd6OekTfR1dqGfk/R1PqCvo69Dc4JrAOie\nZaaLPa37WP0iD+DKQa9+nLkDuuj8VQO05zrUN3HfudPuplQR5Y7rJw3eT6XeSb6PSqZpHdir2vTD\n89pgoS4//vXE7+qVSZP/rbJIh3neazybqMy5Lge9xzUOsu5qbXDaMBh4kSntMbeyJarDLuP++VbG\nIGUX1jqu/q2U8XlbpoqnbLh0xlVMga2q/+4WHMi16XMJsAv9nLShvk6r+zlJX+cD+jr6Omu280vK\nTBJcA0DH5A5X7kzNGJR8IKog6hud1S2y/uNktcJMTasmo1Per03lfLdbdpMqh+hg1jujr+d18uO/\nXUUF0mWsJ/g48d8np9XWH7/MtMHziSqw/jOv8SrO7XX8Knec79Y0eLmtddBzZdZ1k6nAL7ToOcuh\nw+vawOMw2qa/5te5ErHz+2GT9zopPt/Vv+9np5fHQCwPvO4abCjW5s8lsOd2oZ+TNtDX2ZF+TtLX\n+YC+TvPH6us0EN9xlc4F1x+14DUAAKv31Fmb6MxM8zTom9IZrI7TZIfqhQZ0C6oP/hatrkqLTIWN\nXb03sa7iYW2NzofnOsy11/duam/89aDhmnwLi87/Re1xp+Wg96bB52kpE+3x2HRwE/d5XZtaezKx\nCVebncfrbnTuK9FW9TUxG6+JmquD5j1X2z+XAKFr/Zy0RF+n1f2cpK/zAX0dfZ01mbb5bGcIrgGg\nm+odu+c639PWfay8t/7jM8epDwxX3WmqH6/pJkfrfD2rcF47xtWCFRs3tcHL+TP3XVpUi9Urvo5j\n/c03sclOK9oj7vvewHO1L20tqqqpRpsHTai/v4sVr3XZ+s8lQAf7OWmJvk7b+zlJX+cD+jrN6es0\nJ7gGAHZOvXP33OBn5oBuYiD0koHhi0x0dnelwuQ51WDocdENXqKDXa2rd7CGgVX9uc5iOurkJk95\njcU/yNNqX/r8tXU3UzzPwhveRBvWK5Ga7Dq/TdXrW2Z9xPpgbtXrK+7E5xLYe53q5yR9nQ/o60x9\nnfo6q9GZvk5Ujz8tp7JDG3c2JrgGgA6aGIjNHPxEZ+e5jYaq3z93nIOJ+2/bIlVUGxWv5yWd+bRk\nFfpSYvOZT6LSpz6oqwZh9YHdMtNr36sUecF6gfW23IVB/+2iFUiTn50lKpgaH3vJw2zscwnsL/2c\nd1rbz0n6OtPo6zSkr7OQ+nIqjdbV3zWCawDormpAM69z3WSaafX7ecdZ97qPy6h3Ri9bVpWyivba\naGVWrImZp1N+nDe+mdLZrwZ2b5dYH7Le6X/J52eRqeNtsEzV3jr/re3c5xLYa/o5f65t/Zykr/MB\nfZ3m9HUaiBC+qvh+WLR6fFcIrgGgu+obF83qVDWZ9lp16g7mdNBX1Rlfpfp0yqMYZLRl6YL6+Viq\nimSbUwFzx7g/HOUptbMGdtX6kE3X/qu3x0veV70tuzqYW1VbPXfsnftcAntHP6e9/Zykr/MBfZ3m\n9HWeEReqrmv3Otv2a1qXV918WwDAlI7ttI5j1Xmb16mcnI47rbNWX1ttmemAR3GMw1VNuctVM+Wg\nl3dgfxMVMocxzfMhBh+3beh4rmhDpa1Ue8Q01zxwvolp1CexUU1V9ZUrwA5j7ch56lViS5+T3Jbl\noPei97RJK5j6urKps5N2+XMJ7I2d6OekNfV1dqWfk/R1Kvo6y9HXme6y9j1y1eINWl9McA0A3TV3\n/bWG6z5WA6P7GHDNquyoOm2NO+IxiLte59pwecBWDnqfxvNUr/EwBhzn5aBXbbByF2sbbspTJ7eN\n61IuIwYmV+WgdxPtXVV9neZBdOzaP8vT5+oFaz5O6mpoWp/2vurBXOc+l0CntbqfkzbQ12lxPyfp\n63xAX6c5fZ05ykHvtLZ55X1/OLpo5QtdEcE1AHRU7ujFgOVgxkCsybqPlbtapdB7JqbVNhrQlYPe\nZQyq6se/jc7X1GOUg954mTMVHd7XtXXgTmpVL9VahafRVnnAcbPCAUUTbzb4XGsXbdfPmxfVOtV5\n8LzpduVlOvW5BLqnzf2ctMG+zg70c5K+Di21c5/L+D6qlgh59znc8ktaO2tcA0C3PW04NGXTnqr6\np8nUsnnrPy40oIu1AKuB3LsOV384eh1rCa5tSmsetOZpnLHhTj8Gb/UqjoOYdvd5y9aIbKJ1g6SY\nMlt9tg5qAzv2h8E7sG6t6+ekLfV1Ot7PSfo6tNTGPpcxi6Qetp+toSK9dVRcA0C33demMU6u/9hk\n3cc05T6T6z8+TX99rqIpBpX16qPX21h/MabL5ttFDFBPaxVKB7FG5NkmdufuD0fFup9ji25qn7Pj\nGESzAzr+uQS6o1X9nNSSvk6b+jlJX4eW2qXPZXyvlLXZFGdbWP5nK1RcA0C31QdKTxVD0fmp/v7s\nYCqmPVb3m6xEWmRgeFrrcK21wrqp/BqiYuaTiR3jr6OyYR2e2mqNz9EGc9cfrXn6HEypmGts4rFd\n3aTmqbLmJW01w758LoHuaFs/J7Wtr7Olfk7S1/mAvk5z+jofKmvfTTebuujUBoJrAOiwicqg+kCs\nvoZj0wFVdazJ9R8bDwwnHtuqznYetPaHo/7E69rElM/ODuYm1nmc9z7r95u1MVYTL3nsrqhPCV3n\n+xVcA63Xwn7O5ONb09fZYj8n6eu8o6/TnL5OTaylXn2v3MSFqL0huAaA7ptWQfQ0CFtgE5kP1n+c\n2I27yYCuvqN6W6e31SsY1tVZnjXQ3ldTK+aWUH9sV6uQVtVW0/hcAruoTf2ctAN9nU30c5L/p3xA\nX6c5fZ0wsQFobpeLrb+oDRNcA0D3VR20w9p0u0WnvaaJTmT1+EU3LFr1dL+VmxhkTlZdrcrDBp5j\n6yamd877fExdS3QJ9c9jVzerqb+vVVcK7cXnEuicNvVzUtv7Ohvq5yR9nQ/o6zSnr/PFZysH1vXQ\n+vUCF+I6Q3ANAN03bbrdotNeU+xaXR2renzVmXzYh12tV+i9TaA6vPZjfUAw7/NRb4+TZdYzjMdU\nz/e4iSq3qiJvw+rva6m2mmNfPpdAt+jntJO+zvt2rq+zpX5O0td5Cq1ztXXa59A6Ca4BYC+8NyVu\nYtrrolMMq/tXHdnqWE0HhvWNaRp3hqPzthETneO1DFKj41mfqnuyqffX1IoGCfXzNvOzFu1RDVIO\nlmyP+mZYiwzk6p/JxoOXaJ/rBnddqSlttbJ/G7vwuQSYok39nNT2vs4m+jlJX+cDW+zr7FQ/J+nr\nTIbW+fWe7WtonQTXANB9USFUdXaOl1z3sVJ1fg9jMHY48fumj09Np+dFx/lywdf5ksFIowFIWGow\nEOoDjstlqlrWsNN6ddz8Wj6fGPwveozTelVQgwFWfRBxuch7i/ue1351tcBLXXbK6OUW10ast9X5\nij8Hrf1cAkzTsn7O5H3X1tfZgX5O0tf5wDb6OrvYz0n72teJ11J9F+TPVK60XuT7p3ME1wCwH+oV\nRMus+1iZtRP9MsH16XOdvvjvb6La4rH2+7mDp9pgZNFBwdHEoOC5AcjS6+T1h6O7iUHHmwUrYfLr\nfLvqKY5xvKrN38TzLHqM04kqnavnwoNoj3p1zZsm527iM1I91yIVZPXPdKP3Wtso524bGyMt21bp\ni9d+Mm+Q3tbPJcAz2tLPmbzvWvo6u9DPSfo6H9hSX2fn+jlpT/s68e+z/l2w96F1ElwDwN542il/\nyWmv70ys/3ha+32jTm1/OLqpVzPlDv+sTmhtUHE0ZRft56b1XcZ7PY+B3bOVGjEAqQ8Kbhu8r/p/\nn1qxkZ93zoDoauLcvH1uqnB0xt/Gezxc9TTOOMf1znx+X03bME/RLide001/OGpaFXRWa4+jGEjM\nHHjEf3s7sZbpItXW1WeyGmjmCrt5n8njaPvTaurmFjdGmmyrt8+01WGcm3Lev7vQus8lwDNa0c9J\nm+vr7Eo/J+nrfGCjfZ0d7uekferrTFxMSfFvL5+P8yVuG1ticROK8XjcpfcDAEwRnbw3E//l42XW\nS6tVYVTyVNxPF3j80UTHrFpr7j5+rqbmvreLdvz8ea0K4SI649Oe4yA6rZOd27va81Sq6qx65/Ym\njv9s+0QHthpMVNNE65s7Vce+mDaoqVXR1AeDk8epjnU0sbv6fax7t/JqjPjMXE/Zzf0+bpM7vh9P\nuW8eyJ0t+LyHce7q7XEf5646H9XakJNtsdTGNVP+fTzWPiupFoTUz/O7KpgYrL+b0tkfjooGz/XU\n+W5y/2eONe2z8xCfnXpbHU/5fM2t4mnr57KJVbYxsBva1M9JG+jr7FI/J+nrTHvejfZ1NtnPSfo6\nS5nxHbasu/5w9HpFx9o6wTUA7Il6J3KZQVhlxtTIi/mP+uAYR9Fhf26K3W19Q5Ipm5V8Mq/zHvc/\nb/A8lcd4P40rWWZ0eqeZ2U5xjNMF1rd8iONNDe5Xpfa6Thdow+r1nS1SoVZXW8ex6dTdmYPlBZ7z\ntFbBNk9+T/3aZ3JrwXVarq0WCSta+bl8juAa9lOb+jlpQ32dXennJH2dWc+7sb7Opvo5SV9nKSsO\nrl/cL24TwTUAsDXRiT6qVbE81qpcbqat3xcDwXdTGJsOJOMxx7VKmcmKiep2u+yu3fFeTiaqn+7m\nvZcpx6g6z9MqO6pj5cF4053kVyZPj5yoNqq/tmpq9V1Ueayq+uSw1qZHE5VrVWXSzap2Wq+1//HE\neaye67ataw02bKvbBdf/ro7d2s8lQNttoq+zK/2cpK8z7Tk31tfZ5X5O0tfZW4JrAAAAAABaxeaM\nAAAAAAC0iuAaAAAAAIBWEVwDAAAAANAqgmsAAAAAAFpFcA0AAAAAQKsIrgEAAAAAaBXBNQAAAAAA\nrSK4BgAAAACgVQTXAAAAAAC0iuAaAAAAAIBWEVwDAAAAANAqgmsAAAAAAFpFcA0AAAAAQKsIrgEA\nAAAAaBXBNQAAAAAArSK4BgAAAACgVQTXAAAAAAC0iuAaAAAAAIBWEVwDAAAAANAqgmsAAAAAAFrl\nldMBANBu5aD3WUrpK7UX+Y3+cPR1p619ykFvPPGi/np/OPps39sFgP1VDnq5z/LrtQb4bn84+qqP\nRPvoc9I2Kq4BAAAAAGgVwTUAAAAAAK0iuAYAAAAAoFUE1wAAAAAAtIrgGgAAAACAVhFcAwAAAADQ\nKoJrAAAAAABaRXANAAAAAECrCK4BAAAAAGgVwTUAAAAAAK0iuAYAAAAAoFUE1wAAAAAAtIrgGgAA\nAACAVhFcAwAAAADQKoJrAAAAAABaRXANAAAAAECrCK4BAAAAAGiVV04HAMB+Kge982298f5wdOVj\nBwAAzCK4BgDYQ+Wgd5pSutziOxdcAwAr44I8dI/gGgBgP51u4V0/xA0AYGVckIduElwDAOyh/nD0\nadN3XQ561xF036eUXveHo8dFWiwqoPJgMj/urD8cCa8BgFVyQR46SHANAMBMETrnweBtfzjqL9NS\nefpsOejdpZTepJTeloPep8JrAGBVXJCHbvrIeQUAYJpy0DtMKZ1XA7OXNFJ/OHo3OEwpHeRDa3AA\nYNMmLsh/umhonf58PesclB/GBflDJxLWQ3ANAMAsJxE0Xy0zsJsU4fVNSuko1qIEANgIF+Rh9wiu\nAQCY5Th+f7fCFrqNP4+fuR8AwCq5IA87RnANAMAs78LlGJitRH84qkLwI60OAGyQC/KwYwTXAABs\ng/UgAYBNckEedozgGgCAWd7tkl8OeiurIrKBEQDQQfo3sAaCawAAZqkqkk5W2ELVsVY5TRcA4Dku\nyMOOEVwDADBLFS6frmKQV9vNPwmuAYANc0EedozgGgCAqfrD0U1tIFaWg97SA71y0MtrP5axm/9j\n7MIPALApLsjDjhFcAwAwz1kEzQcRXr9ZJMDOgXU56F2nlN7WNi466w9Hj1odANgUF+Rh97xyzgAA\nmKU/HD2Ug96nMTg7ih35j8tBL8Xg76FaM7LmIO57FD9XHiO0vtXgAMAWnMXF9OqCfO7L3DTtm0Rg\nfRq3igvysCaCawAA5srhdUrp03LQO40psdVGRE2n2VaVSFcGdgDAtrggD7tFcA0AQCMxxfYmqo2O\nI8Cu31IM4qrNj94NAA3oAIC2cEEedofgGgCAhfSHo/taOA0AsHNckIf2E1wDAAAAsJdckIf2+si5\nAQAAAACgTVRcAwAAAECLlYPeV1NKX/3jP/mTL//Ej/3YD1NKP+gPR99yzugywTUAAJ1UDnq/mlL6\n1T/7sz/76S996Ut/lFL6Xn84+pqzDQDsoBxc//pP/NiPVa/8uyklwTWdJrgGANgj5aB3Ejvo38V6\njncd3hH/51JKX/nSl77UgpcCAAAsQnANALBfjmq3d8pB764KsvvD0Z3PAwCwC/bsgjzsHcE1AMB+\nuUkpPUZ4fZxSOog/8y0PAFMM/u5i8GeXfQCgrVyQhw4TXAMA7JH+cPSQUrqq3nE56FUB9qwg+3Gi\nikmQDQC0hQvy0GGCawCAPRYDuKdBXDno1UPsagB4ErcqyL6tBdkPPj8AwDa4IA/dJrgGAOBJTKm9\nqwaBtSD7JP7MA8DT6v7loPcwMQAUZAMAW+GCPHSL4BoAgJnqQXY56B1MVDHlPw8ngux7GyQBAG3g\ngjzsNsE1AACNRAh9G7dUC7Kr2+GUDZLuaxsk3WppAGBbXJCH3SK4BgBgKVOC7MOJAeB7QfbEBkl2\n+gcAtsYFeWg/wTUAACsR02lvqmM12CAp1Xb5v3IWAIBtcUEe2kdwDQDAWkzZIKkeZJ/Er4/jT8E1\nANAaLsjD9gmuAQDYiDk7/VsvEgBoNRfkYfME1wAAbEVtgyQAgJ3igjysn+AaAAAAAF7ABXlYvY+0\nKQAAAAAAbSK4BgAAAACgVQTXAAAsJK/hGOs4AgAArIU1rgEAyGH0aeyIXwXSeY3G2/5wdFO1Tjno\nnaeU8u0g/p43H7rqD0d2zgcAAFZKxTUAwJ4rB73rlNJ1LbRO8fN1/LcqtL6sQuuQf76s7gMAsGvM\nJIP2UnENALDHotL6NFrgqrYb/mH8/rQc9O6j0jr/eRG75lePvYz73Fa/BwDYJjPJoBsE1wAA++0k\n3n2/PxzdTrTETTnolbVK67P+cHRf/cc8+ItBXhkht+AaANiqmAl2OvEacoCdK6uP+sPRWW0mWV01\nk+ww38dZhO2zVAgAwH7LA7n7KaF15SoGcvf10LoSj8vh9dG+NyQAsF1TZpK9jttZzBw7jftUM8le\n94ejIt/iPo9xH0uHQAuouAYA4HFWC+Swuhz00rz7xMDPAA8A2DYzyaBDVFwDAOy3x4kNF6e5iXAa\nAKDNzCSDDhFcAwDstzxAO5o3JTav89gfji7mtNKxqiQAoCXmziSLH5+bSXboZML2Ca4BAPZbVZGU\nNyN6rvL6A7FOZBJcAwAtYCYZdIjgGgBgj/WHo7uq6rq2LmQjeWf+WCfyMQaBABtXFMVpURRvtTxg\nJhl0i+AaAIC8i/6neVOiBVviIW55ADhvyi3AWhRFcZ5SurYeLRDMJIMOEVwDAOy5HDpP26DoORFW\nv56zARIAwMaYSQbdIrgGAGBpKq0BgJYxkww64pUTCQAAQPrzpTferQ07Ho9fz2uUoijGyzTaeDwu\nNDawLhE6LzWTrBz0XgutoT0E1wAAAHuuKIrjWCv6cM0tsXCYBLApQmtoF0uFAAAA7KmiKA6KosiB\n9ZsXhNYXuYq64e1TnzUAoAkV1wAAAHsolgXJt4N491fx57nPAwCwbYJrAACeVQ56p7Hu7dEqlhLo\nD0fWuIUtKYoi/zu+rNayjuU7ctX0XYTZAABbJ7gGAGCmctA7inVvj7QS7L4Ird/GG8lruV6Nx+Mr\np3a+WAO8uoCXK9QfUkq30X4frIlbFMVhVK4fx8W+h7hAcJMvELTs7QFAKwmuAQCYqhz0DmLd22oZ\ngRy83MWfwA4aj8f3RVHcRWidq6z35t9zhPbVd9pNvP/HifucRzX63Xg8fp3XAI+LdycTh6uC6dOi\nKF7ndq0d43LKciuHcTspiiKH12drfbPAXGaSwW4QXAMAMMtpBDw52DnrD0e3Wgo6oT+tSrjLogK6\nCq3vp4XWkyK0fhPB1m29WrooitMIuPN9ypTSJ/H76/juvItwPAfgjxPLs+SwO//edypsmJlksFsE\n1wAAzFKtf3sltIbu2MPQugqXq9D6dcM2qMKti8nlVMbj8U1RFA8RbB9GkH0UofW0+7973qIo3sb9\nLiMMBzbETDLYPYJrAABmqYLrGy0E7KKJqulFQuujCLdmrgEem1nex33PY7mB59YMv4lAPIfdR/Ul\nRoC1M5MMdsxHThgAAPP0h6O9qs4EFpdD2Ly2c64oLopiHLfPi6Iooxp5W6rQ+mGB0DpV1dnj8fji\nmftVGy0exrIgTe+fLFUAG2cmGewYwTUAALO8C1hiPUiAWXK18dv4s/59cRibGl4XRfEmqp83Jtab\nPorqymXW9X4uhE5x7MqzGy5ObIa50fYAzCSDXSO4BgBglqoa6VgLAXMcRBDUTyl9PB6Pi3zLFc61\ngCh/j2wsvK5tkvgYldYLL8lRbcS4wP2tkws7wEwy2B2CawAApuoPRzcxvf5c1TUwxUXcPhmPx2fj\n8fi2XtWcg9/8+1olcrUp4VrlJUteGloDnWQmGewYwTUAAPP0479dl4PeoZYCKnkTwrjNrTQej8c3\ntWU3TouiWNt3SaynfR5/7QutgRozyWDHCK4BAJipPxzdx3T/HDS9LQc9gz1gGfU1ZU/W0YIRWl/H\nX88WXeoD6DYzyWD3vHLOAACYJ4fX5aCXw+syr1FbDnrVwG9p/eHoSqPD/shLiBRFcReVjpsIjMwQ\nAabJM8nexEyyfn84sjY9tJjgGgCAucpBr5p6XwVBpytoMcE17J8quF5LqJyXJInNH/Ma1+dFUTzE\nMiUA79Quxr+JmWQ5vDY7A1pKcA0AwEzloHe9oqAaoLK2iuu85nasof1u2ZCiKO6tcw3UmUkGu0Nw\nDQDAVOWgd1ILre9ijdq7/nD0qMWAFruIcDzf3hRF8elzG0gC+8NMMtgdgmsAAKedcLkAACAASURB\nVGapNlC77Q9Hfa0ErMhaQ+RYTztXU36eUspLh5T57/n3TiDsNzPJYLcIrgEAmKUKri+0ELACx3GI\ntVc/18LrN1F5fR2bsgF7ykwy2D2CawAA5rLjPrAi1drWG1lzOq9tXRTFRYTWJ0VRXI7HYxfiYH+Z\nSQY75iMnDACAGd6FS+Wgd6iBgJcoiuI0lu3IbjfVmOPx+Ka29ux5vA5gP5lJBjtGcA0AwCxVuHSs\nhYBKURQHRVHkTQ+PmjRKvn9shJbd5UroTTZmVFlX32fXTV830E1mksHuEFwDADBLrlTM6z5eqroG\nak7jglYOr0/mNUyE1nmd6cP4PtlWpeNZbYmS/Lp9p8H+MZMMdozgGgCAqWKzorOY3l8a6AHhJgKg\nd98NUX19Wq9kzj8XRZGrrD+vrW19selq60rerDE2Z3ysve6DZo8GOsJMMtgxgmsAAGbqD0e3EV7n\n4Olt7MgP7LEcAo/H40+jevoxQqC8AeLboijG+ZZ/zrM1IiTO0/Jfx3rTWzMej9+9jnj+o1g2RHgN\n+8NMMtgxr5wwAABmKQe94widLmKN2lx5fZfXqX1Jo/WHo6sGdwM2bDweX9U2M5wr37coiptYOuQo\nlgOpqqsfoir7bp2B9SKvN+6fX1OxwuMtdP94zMznB9YnzyQrB718Mb6M/kzfetfQboJrAADmeTPl\nvx2vYJqt4Bo6IJbg8O8Z2Al5JlmE19cxk+wsZpcBLSS4BgAAAKDzzCSD3SK4BgBgpv5wZEo7ANAV\nZpLBDrE5IwAAAAAAraLiGgAAAIDOM5MMdouKawAAAAAAWkVwDQAAAABAqwiuAQAAAABoFcE1AAAA\nAACtIrgGAAAAAKBVBNcAAAAAALSK4BoAAAAAgFZ55XQAAMBq/fN/9ZPp1/6b38nH/N3//DeKNB6P\nC00MwL4piuKzlNJX8ts++ZW/kf72X/1xnwGgMRXXAAAAAAC0iuAaAAAAAIBWEVwDAAAAANAqgmsA\nAAAAAFpFcA0AAAAAQKsIrgEAAAAAaBXBNQAAAAAArfLK6QAAgPUqiuKrmhiAPfRlJx1YluAaAIBG\nykHvMKV0GPc9mvKY+/jzoT8cPWjV9/xui14LAAC0nuAaAICpIqg+SSkdx62xctDLd72L2+2+Bdl/\n8me62QBQ96//9Zda1R4uyEP76VEDAPCectDLIfX5omH1FFXgfVkOejnAvugPR/cLH2UH/diX/tSH\nCgBqPvroz1JK2wuvXZCH3SO4BgDgSTno5cD6svarxzxAy9VGUXn0OC98Lge9XLF0EJVLhzEwrP58\nWw56Oby+2rcWH4/HRQteBgBsVFEUn6WUvrLNVndBHnaX4BoAgHcmQus8ILvpD0e3i7RObQB3Vztu\nrm46rQ32cvh9o9UBgHVyQR52m+AaAIBq+mw1sMuB9dmqWiXC79ty0LuOAPs6VyqZZgsArIsL8rD7\nPnIOAQCIAViKdRtXFlrXxXGrAeNps0cBACxmygX514uG1rPk4+Tj5ePGXa7j+YAVE1wDAJBq6z6u\ne7prNch76TqTAACzuCAPHSC4BgAgxdqNad2bDPWHo2qq7ZFWBwDWxAV56ADBNQAAAABd4oI8dIDg\nGgCAFDvrV7vnr0056B3Xnw8AAGAawTUAAKm2W/75mlujOv7dM/fbaT/+0Tid/MrfSH/lr/wH308p\nfbfL7xUA5vjef/rV/+T38v8T/52f/elNtpML8tABgmsAAFJtjcaTctC7XkeLxHGrAd7NM3ffaR+/\n+uP0t//qj6dv/K2f/9p4PP6qTxgA+2g8Hn/t9Jc//lb+f+Iv/9v/apMt4II8dIDgGgCAvEbjQ0rp\nIlritBz03paD3skqWiYfJx+vtuP+WTwfAMA6uCAPHfDKSQQAIH0RXl+Vg17+8TI2GSrLQe8xpXSb\nUnqIabCP8zY6iim5B/H4wzxgjL9XLvrDkcEdALA2+QJ5OehdRJ/mNPonV/3h6PalzxkX9s9rGzK6\nIA9rIrgGAOBJhNd3MdA7jtD5tH6fCLcXdRehtTUgAYC1c0Eedp/gGgCA98QA7nU56FUDtOPaVNhF\n3MXtViUSALBpLsjDbhNcAwAwVYTNV3FLEWQfxn2n7dJfDd4eBNUAQBu4IA+7S3ANAEAjMUirBmp2\nzwcAdoYL8rB7BNcAAAAA7BUX5KH9PnKOAAAAAABoE8E1AAAAAACtIrgGAAAAAKBVrHENAEAjNjEC\nAAA2RXANAMBUEVSfpJSO49ZYOeil2Ogo324F2QBAm7ggD+0nuAYA4D3loJdD6vNFw+opqsD7shz0\ncoB90R+O7hc+CgDAC7kgD7tHcA0AwJNy0MuB9WXtV495gJarjaLy6HFe+FwOerli6SAqlw5jYFj9\n+bYc9HJ4faXFAYBNcEEedpfgGgCAdyZC6zwgu+kPR7eLtE5tAHdXO26ubjqtDfZy+H2j1QGAdXJB\nHnab4BoAgGr6bDWwy4H12apaJcLv23LQu44A+zpXKplmCwCsiwvysPs+cg4BAIgBWIp1G1cWWtfF\ncasB42mzRwEALGbKBfnXi4bWs+Tj5OPl48ZdruP5gBUTXAMAkGrrPq57ums1yHvpOpMAALO4IA8d\nILgGACDF2o1p3ZsM9YejaqrtkVYHANbEBXnoAME1AAAAAF3igjx0gOAaAIAUO+tXu+evTTnoHdef\nDwAAYBrBNQAAqbZb/vmaW6M6/t0z9wMAWJYL8tABgmsAAFJtjcaTctC7XkeLxHGrAd7NM3cHAFiW\nC/LQAYJrAADyGo0PKaWLaInTctB7Ww56J6tomXycfLzajvtn8XwAAOvggjx0wCsnEQCA9EV4fVUO\nevnHy9hkqCwHvceU0m1K6SGmwT7O2+gopuQexOMP84Ax/l656A9HBncAwNrkC+TloHcRfZrT6J9c\n9Yej25c+Z1zYP69tyOiCPKyJ4BoAgCcRXt/FQO84QufT+n0i3F7UXYTW1oAEANbOBXnYfYJrAADe\nEwO41+WgVw3QjmtTYRdxF7dblUgAwKa5IA+7TXANAMBUETZfxS1FkH0Y9522S381eHsQVAMAbeCC\nPOwuwTUAAI3EIK0aqNk9HwDYGS7Iw+4RXAMAAACwV1yQh/b7yDkCAAAAAKBNBNcAAAAAALSK4BoA\nAAAAgFaxxjUAAI3YxAgAANgUwTUAAFNFUH2SUjqOW2PloJdio6N8uxVkAwBt4oI8tJ/gGgCA95SD\nXg6pzxcNq6eoAu/LctDLAfZFfzi6X/goAAAv5II87B7BNQAAT8pBLwfWl7VfPeYBWq42isqjx3nh\nczno5Yqlg6hcOoyBYfXn23LQy+H1lRYHADah7Rfky0Hv5/rD0Q/W2RSbeA5YB8E1AADvTITWeUB2\n0x+ObhdpndoA7q523FzddFob7OXw+2bZVl/34Ksc9L6cUvqyAR4A7LYduSD/zXLQ+17+sz8c/XCV\nDV4Oel9NKX09bvo17BzBNQAA1fTZamCXA+uzVbVKhN+35aB3HQH2da5UesE02zzAywO7r61hgPer\nMbj76iqPCwBs1q5ckE8pfTul9A9TSr9aDnq5b/PtlzZUXIT/Zkrp76SUvt8fjj576TFhGz7S6gAA\nxAAsxbqNKwut6+K41YDxtNmjpvpWDMR+UA56X1/FaysHvV8sB73PYuD4A9XWALC7plyQf71oaD1L\nPk4+Xj5u3OU6nm/Z4+V+zY9SSn85pTTK/ZHcL1n2eNE3+kH0lVIE2LCTBNcAAKTauo/rXn+6GuQt\nvc5kVCL9XkrpZ1JKv14Oej+IqbALyxVJ5aCXB4z/JKX0lXj8t178LgGAbdqlC/JpIlzO/ZF/Ug56\n34zK6UbKQe9Xcp8o942ij5QiEH9xBTdsi+AaAIAUazemVWwyNE9/OKqm2h698FD1cDlXKP1uVCj9\nXNMDTKlIyn4UlU8AwO7amQvyYVrf49didtnX5j0w931i1tgo+kR13171smqwSYJrAAB20bQBXq5Q\n+t9zID2vQilXZ0+pSKqYTgsAu2+nLsjHEmXfmfKfcj/lN6PfMnlx/lWuys59n9qssUn6New0wTUA\nACl21q92z1+bctA7rj/fsmKA99szHv7rUUk9uT7kT0ZF0u9OqUiqqLYGALZhXh/kL0/MEMv+WlRl\nz/Ld/nD0PWeSXSa4BgAg1XbLP19za1THv3vmfk3MG+DlCqW/OfG7vzanIin7jk0ZAaATduqCfHp/\nD4+mXj1zPxfj2XmCawAAUm2NxpNy0LteR4vEcasB3s0zd39Wfzj6bMEB3nMM8ACgG3bxgnxaYV/E\nnh10guAaAIAcAj+klC6iJU7LQe9tOeidrKJl8nHy8Wo77p/F863CqtZu/L2odAIAdt/OXZAPq+rX\nCK3phOemFQAAsCf6w9FVOejlN3sZmwyV5aD3mFK6TSk9xDTYx3kbHcWU3IN4/GEeMMbfKxf94WhV\ng7sUA7PfXNFxAIAOyBfIy0HvIvo0p9E/ueoPR7cvfXdxYf+8tiHjyi7I94ejH5aD3m9PWc96UTZl\npBME1wAAPInw+i4GescROp/W7xPh9qLuIrRe6e7+BngAwDQ7ekE+xcX0l/RrvmvPDrpCcA0AwHti\nAPe6HPSqAdpxbSrsIu7idrvCpUGm+eYLB3i/nQPw9b08AGAbdu2CfIo9PMpBL+/h8ZeXPIRZZHSG\n4BoAgKkibL6KW4og+zDuO22X/mrw9rDmoPo9/eHoe+Wg9/2U0i8seQgDPADoqB28IJ/iovwyS6H9\nnk0Z6RLBNQAAjcQgrRqorWr3/FXJA7x/uMSx8gDvs5a9FwBgxXblgnzI4fPXU0o/s8TjoDME1wAA\ndMG3I7xedIBnbWsA2ENtviAfe3h8e4ml0ATXdMpHTicAALsu1qj+9oJv40cGeABASy16cf07NmWk\nawTXAAB0xdcXfB/ftikjANBGeQ+PlNL3F3hpLsbTOZYKAQBg7WIdyevYDOm2trnR46qeO1cZlYPe\nd1NKX2n4EMuEAABt1nQPj7xnx6Izz6D1BNcAAGzCeW0H/5O4XZaD3k1K6WaFmx59q2Fw/f2oZAIA\nWMgmLsiHpnt4uBhPJ1kqBACAbTmIQPvzctB7Uw56Jy99Hf3h6FuxdvVzDPAAgGVNXpC/jv7MZYTa\nK7HAHh6WCaGTBNcAAGzCVW3H/vzzpymli6hSSjH4K1f0Op4bvP1oiY0cAQDmWfkF+fDcHh6/bc8O\nuspSIQAArF0sBfJ64nnuqx/KQe+4Vrn0Urma+tfmHMOmjADAS+SL8IfRd7mKC/H556OowK76NcVL\nW7nBHh6qrekswTUAAFvXH47uahXZLxIDvO+klP7mjOM8V7kEADDThi/Ipzl7eORNGT9zpugqS4UA\nANBFs6qPvpuDbWccAFiXfEG+PxxdrOrwc/bwcDGeThNcAwDQOf3hKK9h/XtT3pfptADALprsw9iz\ng86zVAgAAI3ELvnVTvlHUx5TTZF9iCm025YHeL9eew0/ioolAIBdM7mHhz076DzBNQAAU0VQXd9g\nqLFy0EuxZnW+3W4pyJ4MroXWAMBOmrKHxzedSbpOcA0AwHtiQ6HzFWwqVAXel+WglwPsi/5wdN/g\ncSthgAcALKMc9I5illk10+wxzyjLs8v6w9HjFhv1W9Gv+X5/OPreFl8HbITgGgCAJ+WglwPry9qv\n8uDsthqs5b/PC59joHcQS4kcRnBd/fm2HPRyeH21wRb/ZgzwvmNTRgDYD9GfyUuX3TZ9wzHT7Dxm\nmx3MuV8+5k3egHHTjZn38Pid//pX/q+PisLFePaC4BoAgHcmQuu7GJQ1HvClLwZUVaj9NJgrB708\nADytVV/n8PtmE63eH44+iwGeZUIAYH9U/ZmiyTsuB73cT7lu2Dq5X3NSDno3MZtsoxXY//L/++P/\n/u/+g3+kX8Ne+MhpBgAgqoyqQV4OrF8vGlrPko+Tj5ePG3e5jufbiD/8o3/xtVyhtPcnGQD4wERo\nnUPoPDMs91s+7g9HRXWL313ELLQUF+XflIPezOrsdfi7/+Af/VfOIvtCxTUAACkGXyk2UjxbR4vk\n48bgrqrAvthEy/+X/+3/9DubeB4AYLdMXLjPs8Zez6qgjqVB8u2qNkvtKJYX2UifBvaNimsAAFJt\nI8Z1rz9dVV2/dONHAICXOo31rB/mhdaTYr+O6kL/+SZnksE+EVwDAJCiYijN23hxFWobGR1pdQBg\ny6r+yNWia1XHfh3Vsmqnz9wdWILgGgAAAIB9VM0Au1vyvVfBtQvysAaCawAAUqzrmNd6XOvAqxz0\nqgHiWiu7AQCa6g9HD0s2VhV4WwIN1kBwDQBAqg28ztfcGtXxl61sAgBYlYWWB5m06PIiwGIE1wAA\npNqmiSfloHe9jhaJ41YVSTfP3B0AYN3u0gtmnJWD3kH8KMCGNRBcAwBQTZG9iJY4LQe9t+Wgd7KK\nlsnHycerbVx09oIpuQAAq/LSpT6qwNsSaLAGrzQqAADpi/D6qhz08o+XMRAry0HvMTYeeohB2WN/\nOJo5OIuKpYN4/GGu4I6/Vy5iF34AgG27jX5Pvrh+tcRrsXcHrJHgGgCAJxFe38Ug7jhC59P6fSLc\nXtRdhNYGdgDARpSD3rjh8xyUg97pIhfXY5mQqo9k7w5YA8E1AADviXD5dTnoVRXTx0tOob2L262l\nQQCAljtY8OVdx2Pu+sOR4BrWQHANAMBUETZfVVNnI8g+jPtO28SoqqZ+EFQDAFt0scRTN54VFhtO\nV3uBLPNcQAOCawAAGokwugqkVRYBAK2Ulz5b8+t6t++HZdBgvT7SvgAAAADQTKyF/YkNp2G9BNcA\nAAAAsID+cPSovWC9BNcAAAAAALSK4BoAAAAAgFYRXAMAAAAA0CqCawAAAAAAWuWV0wEAAABAV5SD\n3mlK6WBTb6c/HF358MDqCa4BADDAAwC65CSldLzB96NfA2sguAYAIBngAQAd8uhkwu4TXAMAkAzw\nAIAOuYqL8tnr/nB05+TC7hFcAwCQDPAAgK7oD0f35aCX+zbnKaXrctD7tD8cuUgPO+YjJwwAgDzA\nqy3fkQd4G1vvGgBgDXK/5iGldJhSOtXAsHsE1wAAVAzwAIBOiArri3gvl+Wgd+TMwm4RXAMA8I4B\nHgDQJf3h6DalVC1/dunkwm4RXAMA8MQADwDomLPYhPq4HPTMKIMdIrgGAGCSAR4A0An94eihto/H\npX08YHcIrgEAeI8BHgDQJf3hKPdr8qyyfiyNBuyAV04SAACT8gAv1ri+McADAHZdfzjqO4mwWwTX\nAABMZYAHAABsi6VCAAAAAABoFcE1AAAAAACtIrgGAAAAAKBVBNcAAAAAALSK4BoAAAAAgFYRXAMA\nAAAA0CqCawAAAAAAWkVwDQAAAABAqwiuAQAAAABoFcE1AAAAAACtIrgGAAAAAKBVBNcAAAAAALSK\n4BoAAAAAgFYRXAMAAAAA0CqCawAAAAAAWkVwDQAAAABAqwiuAQAAAABoFcE1AAAAAACtIrgGAAAA\nAKBVBNcAAAAAALSK4BoAAAAAgFYRXAMAAAAA0CqCawAAAAAAWkVwDQAAAABAqwiuAQAAAABoFcE1\nAAAAAACt8srpAGCaX/il3/rFlNKXNQ5s339x9Je+/OOv/jT9mz/1L9LP/Bt/6IzsgD/+059Iv/+j\nL6f/7Z//W7/4G7/0W/veHADssb/3yz/7c3/xZ/5vH4Ed8vv/z8fpj//kx9IP/9+f+rnf+KXf+uq+\ntwdb8wPBNQCzfDOl9BWtA9v3O/c//+41/Ed/8ff/5//s6H/5H1NKnzktrfWN/ML+13/2F/7D/+Gf\n/vzfSin95r43CAD77bN/+u+lf/dn/0L6yS/94f/xHx/+n/9dDqP2vU1a7Fv5lH3n/t//e7//L3/q\nL6WU/k7cYBu+UYzHYy0PwAd+4Zd+6zPBNbTON77/j//+152W9vuFL6qTfnff2wEAar77/X/891Xv\n7gBjQVriG9a4BgAAAACgVQTXAAAAAAC0iuAaAAAAAIBWEVwDAAAAANAqgmsAZvlpLQOt82WnZGf4\nDgWA9/l/4+5wrmiDLwuuAZjlj7QMtM4PnZKd4TsUAN7n/427w7miDX4ouAYAAAAAoFUE1wAAAAAA\ntIrgGgAAAACAVhFcAwAAAADQKq+cDgBm+FrexVfjQKv8wOnYGd9LKf31fW8EAKixyfTuMBakDX5Q\njMdjZwIAAAAAgNawVAgAAAAAAK0iuAYAAAAAoFUE1wAAAAAAtIrgGgAAAACAVhFcAwAAAADQKoJr\nAAAAAABaRXANAAAAAECrCK4BAAAAAGgVwTUAAAAAAK0iuAYAAAAAoFUE1wAAAAAAtIrgGgAAAACA\nVhFcAwAAAADQKoJrAAAAAABaRXANAAAAAECrCK4BAAAAAGgVwTUAAAAAAK0iuAYAAAAAoFUE1wAA\nAAAAtIrgGgAAAACAVhFcAwAAAADQKoJrAAAAAABaRXANAAAAAECrCK4BAAAAAGgVwTUAAAAAAK0i\nuAYAAAAAoFUE1wAAAAAAtIrgGgAAAACAVhFcAwAAAADQKoJrAAAAAABaRXANAAAAAECrCK4BAAAA\nAGgVwTUAAAAAAK0iuAYAAAAAoFUE1wAAAAAAtIrgGgAAAACAVhFcAwAAAADQKq+cDoB2KoriJKV0\nmFK6G4/H904TAAAAsC9UXAO0Vw6uL+NPAAAAgL0huAZor+N4ZSuvti6K4rwoiuuiKA6dfwAAAKBt\nBNcALVQUxVFK6SBe2d2aXuFpSulz5x8AAABoG8E1wJJytXJRFJdFUXxeFMU4bm+jmvnghe36VG09\nHo8fnSMAAABgn9icEWAJOZyO9aezh1pVdA6cc7X0SVEUr18QOh/Fn7fODwAAALBvVFyzMVGF+ibf\nlnnOoihOi6Ioi6L4g6hs/YP4++lL38M6j72t5+5qe7VBVFPn95pD6bPxePzJeDzOIfXrlNKnEWQf\n1YLtZaxtfWsAAACAtivG47GTxFoVRZEDuOuU0tMmcOPxuGj6nLF5XFmrQJ3mPgLEhUK+dR57W8/d\n1fZqm/hcP057n0VRnEQ7LfRZrz0+t+/bZR/f8DmeKsbX9RwAAAAAy1JxzdrkqtSiKHJg/aYeWi8i\nKlvfRFD6rro1pfRxBG0fx98f47+/WWRd4XUee1vP3dX2aqPxeHw3K5wfj8dPy3tEwL2o6jHr2pQR\nAAAAoNUE16xFVHN+HsspZFdxW1RVqZ0D0bwUw021ZnD+M/89/z7++0FV5drQOo/9nHU9d1fba98I\nrgEAAIC9JrhmpfISB7GG9WWEl/cRcl5EoNlYVKqexP1nLj0Rv+/HX4+bVLiu89jbeu6uttcuiiVV\nqjZZJny2vjUAAACw1wTXrExtXd7jCKkvxuPxp0sGd6kWlN7Xl16YJp7jfuJx2zr2tp67q+3VSA7J\nJzaM/LwoistZS5bkcDkvZRP3q+5frihsr2Ya3CzzPuLHx2X+7cT7uoyNUMe193Yda28DAAAAtJ7g\nmpWJatsctOVgMwfWyywNUleFf3OD0prqfqcN7rvOY2/rubvaXu/Jy9BEGJsr+6u11MtYf/skKv1T\nLGvybsmauKjyJAe7taVsDmv3P4n1ua+XfG2HsUzOeXXxZonDVK91mdD6PC4endeqtlO8t/xeywi0\nl1pzHgAAAGBTBNesWn88Hufbw0uOO1H1umhYOndDvHUe+znreu6uttdzahtGnsRz5mVpitgw8mza\netsRSp9HMNyvbTD5aS0sPl2kOrkoinz/cYThl3GcT6o1wBe01DIhEcZXS/Q8xPv/pLZ5Zj/a6DjC\n7aMGhwUAAADYilYF11FJ+QcxrX0v18bddUsGddNUodpj0xA87lc9/7xQbp3Hfs66nrur7fWc6zj+\nRVwweapSjs0iq/W2DyNcvo7K43z/HHLf1jaYzMugvK4FxpcLvpa7uD1U4fCiS3NEEL/wxozxPOfx\n15uY8XBTna/YPDO/136tTSwbAgAAALRWa4LrmLpeVQseRiDF/qqWMlh0c7rq/vOWQljnsZ+zrufu\nanvNcxTh69WsZWkm1ts+j9B65v1DtS714eQSI7NESPw6bp9EOHwQS3MschGuvr71Iu1dhew5fD+b\ndwEp1ig/W+DYAAAAABvXporryQ3Upm6oxt6ows5FK7ir+zcJYtdx7Oes67m72l7zHERQ+9w60lXl\ncn4ddwvcPy1bLR7hcBWOL7LO98LrW+dK8lobN1pTe+L1AQAAALROa4LrqC6sr58rVCG9oMp31fdd\n5rWs8lhN79/V9pqlSVBbD9yfrTSeWA7lJRfQqve/yJIcCy8TUl8Tu75USgOrWtYHAAAAYOVezTtg\nbDbWxEPc7uPP22XWOs7rr8bU/MZr6dJZL13jfN7j13nsdT523nN3tb3mWjConQylWyXWt1644rrW\nvk03zgQAAABovbnB9QIO41YFKJdFUdzGBmgLBdgLrusKsBVxke1hzndcVWndNFCuvj8fmgbssTdA\nVRXuuxMAAADojEWC63lT8qtKwePa3/O6qydFUbwWRgNdEqH1mxwyF0VxMVn5XRTFeW1t65uGb32Z\nauv6+uFmqQAAAACd0Ti4Ho/Hjdacjo3CziNQyQH2G+E10CX5+6woivydeBnfcY+1iuf60ihnCyxn\nUlVoL/Jd+RRcW14JAAAA6JKVb844Ho9zdeGntfAlh9elTw3QJXEx75PYSPYhAuvj+O7L34OfxPfh\ns2LJjyqEXqTi+iWbRwIAAAC01sqD6/RFoJOrD/u1Xx1GJTY0tdCme1PMe/w6j73Ox8577q62V6vl\nKufxeJyXCvl0PB4Xccs/ny1YAb3w+tYAAAAAXbaW4Dr9+bT1erXh8Zy7wyxHC7bMIvdf57G39dxd\nba+uq9qq6UaOAAAAAJ22tuA61NdqPZx7zx2Rp/QXRXFZFEVe13Zcu70tiuK6KIqTVb+ToigO8mZv\n8RzVc76NDeK6qqo6XXQphOr+86pW13ns56zrubvaXvuiurC36F4AT/fPdm1KowAAHrNJREFU3xP7\n3ogAAABAd6w7uK4HVs+GrPUg+Jn71QPcpZcgySFzPQh+5r45PL5OKX0em09OVpDn95dfS1kUxedF\nUSxcYV57Lef11xjPeTnRhtXzddVD7X0uorp/kyB2Hcd+zrqeu6vt1XkvWN96VnsDAAAA7Lx1B9fr\nUp9O/5IlSOqPnTlFPyoZ30wExbnS8aJ2y8uiPMZ/yyHUmxeE6ofxvDmIup6oXL2L28MS1Zm75Glz\nzwj2nhX3q9pqXtus89jPWddzd7W99kE1S+M+9gdobDwe14NuwTUAAADQGesOrutT11dZdVkPmU9e\nMEW+vqzH1OC6FlpXoVAO4T6JDdiuare8GdvHEWRXll06pAoHy2jD3Havx+Nxft7Xccs/3zxznJ0V\ngVwV4jVtw+pCxONEoPeedR77Oet67q62156ovluWbafqwoDgGgAAAOiMdQfX9SBlZVWXsfHje+H1\noseIpTyeKkLjmNOcTwRLr+fcN7+2q5TSWe1X18sE61GtfRjt9umehn/VOW56fqsK9yYb3K3z2Nt6\n7q62V9ctu7515encLFARfxDfbQAAAACttLbgOoKResi16uC1frxllgt5dpmQCIGqcCeH1f0mU/mj\nErqqvD5Yci3q86hybfScHVWdl6PnKtfjQkR1gWGRIHYlx45NO6/j9lx4uK73tTPtxVNbHdUuoC37\nHVmfeXHZ8DHXS2y2CQAAALAx66y4vqwtefG4hmUtXrpcSD18m/Xa6hWJVwsGyPU1rxetbDyKtrua\nV93ddVFlXp3n6wj5PhC/L+P3t02q09dw7Ou4QHEaP2/yudd63HUfe89VF9Dulr1AFY+rLpSd1Dd3\nnXGOruP7z0UFAAAAoLVWHlznADmCkXqVcX/VzxNhTT1wbrxcSIRrVah+Oycwqo65cPAex6yCoYMF\n17quQnjB0hfLrjxEm+QNL8+riuaocj6NNcirtcDPnj/kWo59POPnTb+vXWkvvvDS9a3fiSWKqqVG\nLouiKOvfOdX5KYri8/huvppzwQ4AAABg61YSXEcoclwURa6y/nwitD5bY9Vl/biLBMPPLmEysQb2\nsgFy/diN1p6tud3nautKXAD4NEK5g6jk/7woinF81qolD6q1wBtXra742Fe1n5/9vKzrfe1Qe/GF\nl65vXfd6Yi3yHF6PJ85P/h66GI/HF80OCQAAALAdxXg8nvnEEXgs6y4CksaBTP35xuNx0fAxf1AL\nmD9pEvZG1WEVJH88LWCL6fbVerFnyyx1EpXdb+OveSmA18/cv97eSz1nl0VF73HcDmIplrto2xe1\n1UuPPXGuFzp363pfbW4vni6O5Qr1xt93Dc/NcQTXx7XvubsIx29cEAMAAAB2waqD62p5jKXWtl0y\nuL6srSF9EVPm592/HjDm1zl1GZOiKN7UqiFfL1s1XntPiwbXjUJ42qF2oeMxzp1qY+aqfWae/W4A\nAAAA2DevFni/s6aWH9aWBnkYj8ebXtf2thZcn0ws2TDNs8uETFrRUidN1j1+IrTeOdVaxTdCaxp6\n2phRgwEAAAC8r3HF9bwK6ImlN5Ze4mKZiuspzz+3Url237zh4sdNXkusHbusN03f07Lvn+2rnTuV\n8jQSs0WO4ztzFWtcAwAAAHTGqoLr41pAu/RSCS8IruvrUc9cLmRimZCbedXhL1zfeyrBdTfVPv+W\nfAAAAACAFfhoFQeJpTSq6e4HtaVDNuW29jwnc55z4WVCVsjyEd1VLflgU0IAAAAAWIGVVFynD6uZ\n0zJLJryk4rgoire1dYanPnfTZUJe+lqWpeIaAAAAAGBFFdfpi6D1fqLi9HLO3ddhbtV1BOvVOti3\nDZ7/qSK7KIrD+XcFAAD4/9u7f984zjsPwO/r8wUBLojNNClt0E26DZbp7YKs7oBLQ+G6qCIrArlK\n7KwAV0idgK3IJnJ3EIuTaxGIDRwOV4iM+AdYtv4BUw5SBLk7zGHkd5jXq+VyZnd2+XL5PABBajm/\ndkbF7off/QwAAH3pLbhOHmaVGNup+3dZ8tB8Ul1Ifixtguuc4BoAAAAAYEl6Da5TPUd+Y8SlTV2n\nm0E2gfTGhCnpJsx+mTq5r5Ivs9FieQAAAAAAetD3xHVIk8/N1HUdIN9b4oXKw+aLqesUYjfhc9tp\n67wje5mT4wAAAAAAt1rvwXWafM6nru/FGNeWcZKrqspD87wuJP+5bXCdh+Cbeq4BAAAAAJZjERPX\ndYD8MJtYrkPrZU5dT6oLyWtCTtpsJAXwV/VmAwAAAADQs4UE18l+9vO9JU4s55PSOzPWhDTy5R/E\nGDt3XS9r2hwAAAAAYFUsLLiuqupoLEQ+WMY5S/ttpr23xyalDy9Z7bJtHY/VnjzrEsCnfu/nakYA\nAAAAANpb5MR1GAt9657oZd3ksJmUXs9qSk6qqno5ZZ3L1M+hqRdZS0H0zrQVYozbMcbn9ZR2Ooal\nhPYAAAAAAKsgVlV16dOIMV78sqqqOMvzjTHWoW0T9NYd0x8tcn9pO3Wlx/Oxh/dT9/Ys26sD62dZ\n5UhIN4HMp7tD+v1GCqsbdei926Zbu6/nDwAAAABwky0juK5D3K+yhy4NkPsMbtPEcx40fzTjxHWz\nvbUUwD9ouUq9r4dVVbWuJxFcAwAAAABcEVzztizAnjRdfZwmrE9S1zYAAAAAAB0JrgEAAAAAKMqi\nb84IAAAAAACdCK4BAAAAACiK4BoAAAAAgKIIrgEAAAAAKIrgGgAAAACAogiuAQAAAAAoyrsuB8D1\niTE+Sjt/VFXVNy4FAAAAQAixqiqnAeCaxBg/DCF8nfb+eQjhcVVVT10PAAAA4DYTXANcsxjj/RDC\np9lRvKoD7BRim8IGAAAAbh3BNcA1izG+H0J4EUL4YMKRfJ5qRL5wnQAAAIDbQnANUIAY490Qwu+n\nHEk9hf0oTWG/ds0AAACAVSa4BihEjLGeqv64xdF8lgJsU9gAAADAShJcAxQixvjLEMIfOxzNWZrC\nfmoKGwAAAFglgmuAgsQY65sy/qbjEX1Xh9epC/uF6wkAAADcdIJrgIKkGzV+E0J4b8aj+jLViDx2\nXQEAAICb6h1XDqAcqfLj0RwHVHdk/z7G+DrG+CjG+KHLCwAAANw0Jq6ZWwrG7jqT0KvfzjF1Pc4U\nNgAAAHCjCK6ZW4zxkxDCH5xJKN6rOsBOIfY3LhcAAABQKlUh9OEnziLcCB+EED4NIXwdY/xPlwwA\nAAAoleCaPvzZWYQbo566/l0I4Z9cMgAAAKBU767alYkxroUQdkIImyGEjRDCWvbrkxDCeQjhuP65\nqqrjbL2NqqpOrueob7zXqUMX6M8vQgg/73F7n6eKkKeuEQAAAFC6leq4jjHeCyHcGwurpzlPX+v1\nMlVVxWs5cIBMj73x34UQHum0BgAAAG6alQmuU2j9IHvoZZqsfpk9tpamsMcnsd8QXAMliDG+CCEM\n5jiUL1NY/dgFBQAAAG6ilQiuY4z1xPRX2UP7VVU9vGKdOrzeThPabwiugesWY7wbQvj9DIdRT1fX\nQfUj09UAAADATTc1uI4xXvyy5FA3xvggC6APq6ra7bDujXiOwOqLMb4fQqhD5/c6PNmzVAfytKqq\n1/6bAAAAAKtgVW7OuJH9fHiNxwEwj9+2DK3r6eqnabr6hTMOAAAArJpVmbj+tums7nqcJq6BEsQY\nPwwhfH3FobwKIdw3XQ0AAACsulWZuH7rRosAN8y0Gyl+lm62+IWLCgAAANwGqxJcA9xYMcZPQggf\njx3/q9Rd/dh0NQAAAHDbrEpVyMzHqSoEuG4xxvqGjB+kw/g8hdVPXRgAAADgtjJxDXCNYoz3095/\nlwLrb1wPAAAA4LZb6sR1jLHuot4JIWyEENbT95fp6ziEcFRV1csZtnvtE9fZc9tMz6vp3T4PIZzM\n8/yA1RVj/GVVVS9cYgAAAIC/eafvc1EHwenrXvbYWozxQQjhqxBC/X07hbshBdib6fHnMcadK7a/\nme2jyoPnsf2/9bWo656e67fpOWyO3SxyLXt+X8UYD1LI3Wa7z7PnsNFilWa9nbHn3mXde9l6223X\nA2YjtAYAAAB42yKrQuqw9mGMsQ6mn2RBdT19fJS+h/T4Zhb41sFuHeYc9nw8Jy2W6SQF0M+y5xbS\n9PhRmrQOWXDdLPNm4jzGuFtV1VXHdJytt9HhOYwH1Zsd1t0c2z8AAAAAwFIttOM6hdbPU3hbB6f7\nVVWNh6HHKeCuA92D9NiDGGNdq3E+YbP1drbGHnuW/Tz+u8akbc1sQmhdB9a7E55fcy6aqeuN9PUk\nxvirS55j/lwbraems/D5PJ37WdZ9ecWxAQAAAAAsRO8d19k6+UT1UQp1pwahMcZnWXBah9wPO+5z\naR3XqfqkqUN5E6a3eH7jYXcdzt+5Yvlv0z/rIPmjFse1nipZag/TMZ5XVfWzFutupD801A6rqtq9\nah0AAAAAgL713nGd2cjqLa4MrZPDsfWLlMLhJrQ+bxNah++D8fM0Ed4su50msact3/wBYD3t9ypN\nL3VTWVJba9lznR9L79UqAAAAAABtLDK4DimgvdOhciIPS9uEtNflXrbfh10qNdKy+9lDU29GOdYz\n3SZ8bpY5Th3azbFdGpBfsn391gAAAADAtVh0cF3Xfbxsu/DYskVOXKf6jiZsPh+bEm8l3Xgyn7pe\nm7Je157rJqBu1msC6C7rvuxy3QAAAK7bYDjaGQxH24PhaNr7KwDghlhocJ0C2lWTTy4fz3EDw6Ps\n52nT0Mctl2s6qpsXac16TYB91brrE9YFAAC4Keqb/T8p/NO7AEBLi564XkX5i6B5eqBbTVKP9Vxv\nXDGdPWliugmhr+q51m8NAADcSIPhqHk/c352utfr+xkT3ABwPQTX3fUV8HapRWnbc33Rb9080KHn\nWr81AABwU731XqhH3w6Go2owHN3zvwMAlkdw3V3+1/aZg+uqqrq8oGrbcz3eb91o03Pd/E6/NQAA\n3CCD4ejZYDj69pYHq5e9FwIAbijBdXcX4e8c/dbjpvZPt+m5vqTfujG15zrVjyxyQgEAAFiczbEB\nm9uoea/j/QwArIh3Xcjy1QF5jPEkhcuXhdyT+q0bP+i5TvUhk9YNJhQAAGB+qRc5/8TjydnpXl+D\nL2QW2W8NAFwfwfXNcdy88I0xbk6oGrl0YroOqmOM52kKY3NCOK3fGgAAepBC1HuTBk4Gw1H9Ovzw\n7HTv0LnulU+PAsAKUhVyc1zVc72dvl82YTCt51q/NQAAzGkwHB2EEJ6N1VYcj70WP3CTv97ptwaA\nFWTiuruTbPJ5bdae69Qr3WgzGZAv84PwuZ7AbrGtkxRuT6oa0QcHAABzGAxHT7Jhkv00Wf2D9wqD\n4WinXubsdO+hc90r72cAYAUJrrvLX3xuzPHiaNLk86Wu6LluMzE9sed6LPQ2oQAAAB2lCeomtN69\nrAokPa4mpEf6rQFgdQmuuzvJguO+guu222h6rsdvsnjlhMGUnmv91gAAMKPBcLQeQniQ1t7XX710\nc/dbZ+H3G2ene94XAUABBNfd5X/FX59jO3lg3LZXOt93Hj637XQ7TpMg+b71WwMAwOyavuqX11gB\nctL1E52zGgxHG2kYpv5+clXIm5bPg+Gjs9O9Pt93zNRvPRiO6uewk67f2tjv6oGfo/SHiJmqIQGA\n+Qmuu8tfmG3HGPe79lynfuuLj7RVVXXUctV83+vh7aqPq7bT9FxvZ4+5kQkAAMwgCz9r19lb3fr9\nSKo1aSbEJ9aaDIajBymY3m/qNwbD0XZab31s2ZdpuaOxx+v3GQcThn0eDIajwx5D4c791ilMP8jC\n/vMJN8N/00c+GI62ejhGAGAGguuOUtf0UQp/19L3rh8H3Mn+qt82tL6s57p5sXXSIkC/eDGXAu/z\n7DgE1wAA0E0+ENL6df11STeHnBpaJ837jTfvFQbD0UEW0B+n9w7Ne6E6mH4yGI4utpf2c5CWP8w+\nYbqZvnbSenOFwrP0W6c/NjzJAvX9SZPy2bl6Ns8xAgCzE1zP5jB7kfqgDrLbTl2naet72UNdJzOa\nnuv1GON6lwmDsZ7r8Y8S6nEDAIBuLvqVS6+UGAuTp4XWufUstG6qMy5qPgbD0X4KdjfSJHUz4HOQ\n3l/sjtWCPMwmvjfrKe7xSe2OZum3zqfG71y2//r8DIajE8E1AFyfd5z77qqqOs4mKuoQ+FkKpKdK\nyzzLppwfztArnU8SbM9Q9dG8qNvMXrCdZzd6BAAA2pk6RFLfuHH8xn/XIVVjNJPWhx1uILmTvup1\n7ox3U6ew/k7651rax0FafmtSl3Wabm4e3x7/fUed3gulG2leVLtcFZqnKe6tLlUsAEB/BNdv12e0\ntZu9QNpI4fWl66ffPc+rPWbswftBx/Ylj0+T39Cxcx8cAABw4WIQpHmgDqoHw1FdnVGFEL6q3yfU\nPw+Go+dp6nmpUmjdDM/UgfJuh/1vpGnyS9dJ4XTzHmMn/bx/xXabwHjeUL/r+5n8/Ld6L5bCa0M+\nAHANVIV8/yKnecHzJMbYvIDZqKrqzmUrpb7pO6kfbSMLr0/SNpsXr3n3W+PNX+673tQxvN1z3aXf\nOt93Y33CYwAAwBXGJqnfTBCPdUGHrAt6Pb12P0jh9dYyqkXShPGsoXVI72kufU80tlxjt8Vzy98r\nzWSWfuts8Oeo9GoXAEBwHbK+6o3s421vxBh3qqq69GN0dc1HjHErdVY3vdUbE/qjc/tVVc17x/Hj\nsX20npiua05ijJO2BwAAzOZ8MBw9SwMxxykkvqihSDcEbG7210xA/2oB5/oiCM5uQrjWcgp6ksOW\nAW8zDHTcMkTuY3CmU791Oh8GdwDgBplaFVJVVWy+2j6lWda5zn2mSeWtFGA3L8rO08fXrnyRVq9f\nVVX9IvCj9GLweGy98/RY/buf9RBa1/vcz59z2n+X9ePYlxduAAAwu+beM/up2/kH3cl1+Ju6nZuJ\n5410k8K+vQlzU0jb3DTxZI4J72kDOdet671+8ufi/Q8A3AA6rv8WPu9WVfWzFOjW3+9UVdX6Dtf1\n9HUdSldVtZVtp9nWVvqdj6MBAMBqyIPQeym0njqkkm6K2EwIL7Lv+qCH0Lp0XfutSw7hAYAJBNcA\nAADzOboqtM40VYTr6caJvUo929tNP/UqhtYz9lv3YX3xuwAAGoJrAACA7vLAtEt1Xz4hvDlluXmt\nXUPQ2nl/6QaSXV3cpL7Xo7+a4BoAlkhwDQAAMJ/WgeYSJqD3s0D3ySKmuqeYJdidZZ2uNSG1lzPs\nBwC4RoJrAACA5VrYpHAKxrdSULuWwuu1Fbu+XW/MGNrceB8AKIvgGgAAoKOz07182rfr1PBCg+QU\nXt9JYW19bM9WJbzO+q3Hr8FV8olrN2oEgBtAcA0AADCbJgztGlwvvCs53bTwTvpnHdQeLHqfS9KE\nzl1C6/p8vMymrgXXAHADCK4BAABm04SnrW+yONY5vdCbC6aJ5N30z+3BcLQK4fUs/daNo/R9u+0E\nelrOTRkB4BoIrgEAAGbThKcbg+GobbiZh9wLDa7D9+H1YQjhYfrnzmA42ln0Phdsln7rxlH2c9vz\ncE9wDQDXQ3ANAAAwg7PTvaOsLuReyy00gelh6qJeuLPTvf16f2k/B4PhaPsmXu85+q3zdZr1HoxN\nv0/a3066ri+nLQcALIbgGgAAYHb5NPPUQDhVdTTTuw+nLdu3s9O93WxK+eCq0LZQM/Vbj9nNuq6f\nTZpAr6fnB8PRg9QLfpiF/gDAEgmuAQAAZpSqOJoKiieD4eityesUhB5k09a76WaBy7aVwuu1FNq2\n6nkuyDz91m+k876Vwuu1FOJ/NRiOnqWv5yGEr9Kk9WEK/AGAa/Cukw4AADCX3RSCbqYKintjHcx5\nr/VuCruXrq4mGQxH9bE+y8LrrWVVlvRgnn7rC2eneyeD4ehXKZzeSVPweY91HW4/zK7TyxSWL7yT\nHAD4G8E1AADAHFLwu5V1Iq+PhdUhBZ8PZ+lm7lMKbeuJ4wdpszs91Jacd5yCzpdvFZrP2289Lk1e\n1yH+br7tOqQen4ZPXeZHUzcIAPQuVlXlrAIAAPSkrgYZm+A9uUFTzUVKU+x12H58drq3ddvPBwDc\nBiauAQAAepQmdq+jw3qVzd1vDQDcLG7OCAAAQOnO05eeaQC4JVSFAAAAQI8Gw9HdEMIXZ6d73ziv\nADAbE9cAAADQv68Hw9HTwXD0a+cWALozcQ0AAAA9GwxHL+pvaauvQgiPQwiPzk73XjvXAHA1wTUA\nAAD0bDAcfRJC+MOErX5Wh9hnp3tfOOcAcDnBNQAAACxAXRUSQvjnS7ZcT2E/SiG2KWwAGCO4BgAA\ngAUYDEcfhhDqypD3rtj6Z6lG5IXrAADfE1wDAADAggyGo/shhE9bbv0sTWE/NYUNwG0nuAYAAIAF\nGQxH76ep6w867OG7OrwOIdw/O937xrUB4DYSXAMAAMACDYajX4cQ/mPGPXyZerAfu0YA3CaCawAA\nAFiwwXD0RQjh4zn2Uk9hP05d2KawAVh5gmsAAABYsMFw9MsQwh972svnaQr7qesGwKoSXAMAAEsz\nGI7uhhDuOuPcUr8IIfy8x6f+Kk1hPzaFDcCqEVwDAABLMxiO7ocQPnXGoXefpQD7C6cWgFXwjqsI\nAAAsy09//Nf3nWxYiN/8w4/+99E/bv3bvzi9AKyCd11FAABgWf70lx+9drKhV/VNG+uu6/v/9d//\nqi4EgJUhuAYAAJap7uNVZcBt9e89dlyfhRAe1aH12emePwgBsHJ0XAMAAMCC9djvXndZPzo73Xvh\nmgGwygTXAAAAsECD4ajudq9rPN6bcS+v0nT1Y9PVANwWqkIAAABgsR7NGFp/lsJq9ToA3DomrgEA\nAGBBBsPRJyGEP3TY+qvUBV8H1m62CMCtZeIaAAAAFud+yy1/nsLqp64FAAiuAQAAYCEGw9HdEMLH\nU7b9XZqufmS6GgB+SFUIAAAA9OyKGzJ+maarHzvvADCZiWsAAADo32/HQmvT1QDQgYlrAAAA6NFg\nOPowhPB12uJZHVaHEJ6ene69dp4BoB0T1wAAANCv+oaMn6Xp6hfOLQB0Z+IaAAAAAICivONyAAAA\nAABQEsE1AAAAAABFEVwDAAAAAFAUwTUAAAAAAEURXAMAAAAAUBTBNQAAAAAARRFcAwAAAABQlHdd\nDgAmGQxHd0MIHzo5AAAAwJJ9IbgG4DJ1cP2xswMAAAAsm6oQAAAAAACKIrgGAAAAAKAogmsAAAAA\nAIoiuAYAAAAAoCiCawAm+vHf/99PnBkAAABg2X7647++L7gGYKK//M/f/dmZAQAAAJbtT3/50WvB\nNQAAAAAARRFcAwAAAABQFME1AAAAAABFEVwDAAAAAFAUwTUAAAAAAEWJVVW5IgAAAAAAFMPENQAA\nAAAARRFcAwAAAABQFME1AAAAAABFEVwDAAAAAFAUwTUAAAAAAEURXAMAAAAAUBTBNQAAAAAARRFc\nAwAAAABQFME1AAAAAABFEVwDAAAAAFAUwTUAAAAAAEURXAMAAAAAUBTBNQAAAAAARRFcAwAAAABQ\nFME1AAAAAABFEVwDAAAAAFAUwTUAAAAAAEURXAMAAAAAUBTBNQAAAAAARRFcAwAAAABQFME1AAAA\nAABFEVwDAAAAAFAUwTUAAAAAAEURXAMAAAAAUBTBNQAAAAAARRFcAwAAAABQFME1AAAAAABFEVwD\nAAAAAFAUwTUAAAAAAEURXAMAAAAAUBTBNQAAAAAARRFcAwAAAABQFME1AAAAAABFEVwDAAAAAFAU\nwTUAAAAAAEURXAMAAAAAUBTBNQAAAAAARRFcAwAAAABQFME1AAAAAABFEVwDAAAAAFAUwTUAAAAA\nAEURXAMAAAAAUBTBNQAAAAAARRFcAwAAAABQFME1AAAAAABFEVwDAAAAAFAUwTUAAAAAAEURXAMA\nAAAAUBTBNQAAAAAARRFcAwAAAABQFME1AAAAAABFEVwDAAAAAFAUwTUAAAAAAEURXAMAAAAAUBTB\nNQAAAAAARRFcAwAAAABQFME1AAAAAABFEVwDAAAAAFAUwTUAAAAAAEURXAMAAAAAUBTBNQAAAAAA\nRRFcAwAAAABQFME1AAAAAABFEVwDAAAAAFAUwTUAAAAAAEURXAMAAAAAUBTBNQAAAAAARRFcAwAA\nAABQFME1AAAAAABFEVwDAAAAAFAUwTUAAAAAAEURXAMAAAAAUBTBNQAAAAAARRFcAwAAAABQFME1\nAAAAAABFEVwDAAAAAFAUwTUAAAAAAEURXAMAAAAAUBTBNQAAAAAARRFcAwAAAABQFME1AAAAAABF\nEVwDAAAAAFAUwTUAAAAAAEURXAMAAAAAUBTBNQAAAAAARRFcAwAAAABQFME1AAAAAABFEVwDAAAA\nAFAUwTUAAAAAAEURXAMAAAAAUBTBNQAAAAAARRFcAwAAAABQFME1AAAAAABFEVwDAAAAAFAUwTUA\nAAAAAEURXAMAAAAAUBTBNQAAAAAARRFcAwAAAABQFME1AAAAAADlCCH8P03xCa9TGJuyAAAAAElF\nTkSuQmCC\n"
}
},
"id": "478671ca-d12c-4b2e-b7a6-9f270ea03c1f"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Problem 1 (8 points)\n",
"\n",
"If the characteristics of the river inflow and waste discharges are\n",
"given in Table 1, write a\n",
"Julia model to compute the dissolved oxygen concentration from the first\n",
"wastewater discharge to an arbitrary distance `d` km downstream. Use\n",
"your model to compute the maximum dissolved oxygen concentration up to\n",
"50km downstream and how far downriver this maximum occurs.\n",
"\n",
"| Parameter | River Inflow | Waste Stream 1 | Waste Stream 2 |\n",
"|:--:|---:|---:|---:|\n",
"| Inflow | 100,000 m3/d | 10,000 m3/d | 15,000 m3/d |\n",
"| DO Concentration | 7.5 mg/L | 5 mg/L | 5 mg/L |\n",
"| CBOD | 5 mg/L | 50 mg/L | 45 mg/L |\n",
"| NBOD | 5 mg/L | 35 mg/L | 35 mg/L |\n",
"\n",
"Table 1: River inflow and waste stream characteristics for Problem 1."
],
"id": "9e054587-89e2-489e-a327-df728eb76516"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Problem 2 (4 points)\n",
"\n",
"Use your model to plot the dissolved oxygen concentration in the river\n",
"from the first waste stream to 50km downstream. What do you notice?"
],
"id": "355b75a6-7707-467f-8fb2-1cda18286f6f"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Problem 3 (3 points)\n",
"\n",
"Under the assumptions of Problem 1, determine the distance from waste\n",
"stream 2 it will take for the dissolved oxygen concentration of the\n",
"river to recover to 6 mg/L."
],
"id": "f3a5c3df-0c1e-4e76-b11c-16daa43f23e9"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Problem 4 (5 points)\n",
"\n",
"What is the minimum level of treatment (% removal of organic waste) for\n",
"waste stream 2 that will ensure that the dissolved oxygen concentration\n",
"never drops below 4 mg/L, assuming that waste stream 1 remains\n",
"untreated?"
],
"id": "0d70fbbc-5789-4fda-b22a-c88f555ba4f9"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Problem 5 (5 points)\n",
"\n",
"If both waste streams are treated equally, what is the minimum level of\n",
"treatment (% removal of organic waste) for the two sources required to\n",
"ensure that the dissolved oxygen concentration never drops below 4 mg/L?"
],
"id": "8e863eb2-369c-4fdd-830d-37ada8b524af"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Problem 6 (5 points)\n",
"\n",
"Suppose you are responsible for designing a waste treatment plan for\n",
"discharges into the river, with a regulatory mandate to keep the\n",
"dissolved oxygen concentration above 4 mg/L. Discuss whether you’d opt\n",
"to treat waste stream 2 alone or both waste streams equally. What other\n",
"information might you need to make a conclusion, if any?"
],
"id": "af951e12-ff70-41f5-a2f4-707a46b9d32e"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Problem 7 (5 points)\n",
"\n",
"Suppose that it is known that the DO concentrations at the river inflow\n",
"can vary uniformly between 6 mg/L and 8 mg/L. How often will the\n",
"treatment plan identified in Problem 5 (both waste streams treated\n",
"equally) fail to comply with the regulatory standard?"
],
"id": "00ea6968-648b-4041-9263-3ec1de5c493a"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Problem 8 (5 points)\n",
"\n",
"A factory is planning a third wastewater discharge into the river\n",
"downstream of the second plant. This discharge would consist of 5\n",
"m3/day of wastewater with a dissolved oxygen content of 4.5\n",
"mg/L and CBOD and NBOD levels of 50 and 45 mg/L, respectively.\n",
"\n",
"Assume that the treatment plan you identified in Problem 5 is still in\n",
"place for the existing discharges. If the third discharge will not be\n",
"treated, under the original inflow conditions (7.5 mg/L DO), how far\n",
"downstream from the second discharge does this third discharge need to\n",
"be placed to keep the river concentration from dropping below 4 mg/L?"
],
"id": "7c51a462-e62d-4a5f-a1f4-15e981fb62e8"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## References\n",
"\n",
"List any external references consulted, including classmates."
],
"id": "faa3421f-edfd-4a98-aaa2-af6d757c1724"
}
],
"nbformat": 4,
"nbformat_minor": 5,
"metadata": {
"kernel_info": {
"name": "julia"
},
"kernelspec": {
"name": "julia",
"display_name": "Julia",
"language": "julia"
},
"language_info": {
"name": "julia",
"codemirror_mode": "julia",
"version": "1.10.4"
}
}
}