
Homework 0

BEE 4750/5750

Due: Sep 01, 2022 by 9:00pm ET

1 Overview

1.1 Learning Objectives

After completing Homework 0, you should be able to:

• clone GitHub repositories;

• use Julia to write basic code;

• use Weave.jl to compile reports which incorporate Julia code;

• submit assignments using Gradescope.

Homework 0 will only be graded based on completion, but make sure you don’t run into any
problems with this workflow, which will be repeated for future homework assignments.

2 Problems

2.1 Problem 1: Writing Some Basic Code

This problem focuses on writing basic Julia code and including and referencing that code in
a Weave.jl report.

2.1.1 Problem 1.1: Writing A Basic Function

Write a function to compute the square of a number. Include your code in a fenced code
block like that below:
function square number(x)

your code here
return output

end

1

2.1.2 Problem 1.2: Referencing Output

Write a sentence where you include a real-time calculation of 52 using your function. You
don’t need to do this by evaluating your function in real time, but you can use syntax like
the following:
"We can see that $xˆ2 =$ `j square number(x)`."

2.1.3 Problem 1.3: Making Plots

Evaluate square number() over the interval [−10, 10], then plot the results. This tutorial
shows some plotting basics and provides links to other resources. Make sure that you label
your axes and any other relevant plot elements; this will be part of future rubrics.
To include a plot in your report dynamically, you can use a code block that outputs a figure;
see the Weave.jl documentation for a description of the chunk options that you can use
with figures. The use of the label chunk option lets you refer to the plot in your report
using LaTeX, using \ref{fig:square-plot} (or whatever label). Note that this won’t work
with HTML. You can also just directly include figures using standard Markdown if you’ve
generated them separately.

2.2 Problem 2: Square root by Newton’s method

This problem involves implementing an algorithm: in this case, Newton’s method for com-
puting square roots. It was shamelessly copied from MIT’s Introduction to Computational
Thinking course.
The algorithm is as follows:
Given x > 0, the desired output is

√
x.

1. Take a guess a

2. Divide x by a

3. Update a to be the average of x/a and a,

4. Repeat until x/a is close enough to x.

5. Return a as the square root.

2.2.1 Problem 2.1: Justify Step 3

Why must
√

x lie between x/a and a, as in Step 3 of the above algorithm? Take advantage
of any math typesetting you might need using LaTeX.

2.2.2 Problem 2.2: Implement the Algorithm

Implement the above algorithm in Julia. Notice that Step 4 requires some interpretation for
”close enough”; this is usually done by including an additional parameter specifying an error
tolerance.

2

https://viveks.me/environmental-systems-analysis/tutorials/julia-plots/
http://weavejl.mpastell.com/stable/chunk_options/
https://computationalthinking.mit.edu/Spring21/hw0/
https://computationalthinking.mit.edu/Spring21/hw0/

Test your code by outputting
√

2.

2.3 Problem 3: Working with Vectors and Matrices

We won’t be doing much (if any) linear algebra in this class, but vectors and matrices are
useful data structures, so let’s see how to use them.

2.3.1 Problem 3.1: Generating Random Values

Make a random vector of length 20 using the rand() function. Note: We’ll see later in the
course how to use Distributions.jl to sample from particular distributions; using rand()
in this way just samples from a uniform distribution over the unit interval [0, 1].

2.3.2 Problem 3.2: Calculating a Mean

Implement your own mean() function to calculate the mean of a vector using a for loop and
the random vector from above. Then write another function demean() which subtracts the
mean from every element of the vector using your mean() function.

NOTE: Mutation

Julia has particular conventions around functions which mutate the input data.
What do we mean by mutation? A function can operate on data by modifying
the original vector, or by creating a new vector. For example, in this problem,
you might write the following function:

function demean(vect)
... # some other code might be needed here
for i in 1:length(vect)

vect[i] -= mean(vect)
end

end

Given how Julia handles memory and passing arguments (the details of which are
not essential), this would mutate the original array and change the underlying data.
In general, this is undesirable behavior unless high levels of code optimization are
required (which they won’t generally be for this course, and rule #1 of coding is
not to prematurely optimize code), as the original data then cannot be reused.

Instead, try to work with copies of data, particularly when they aren’t really
large. This is always done when you use the = operator; e.g. x = 2*x.

If you write a function which does mutate the original data, the convention in
Julia is to append an exclamation mark (!) to its name to indicate that it is
doing so. So sort(x) returns a sorted copy of x, while sort!(x) sorts x in place.
In other words, our function above should have been called demean!(vect).

3

2.3.3 Problem 3.3: Accessing Array Elements with Indices

Create a vector of 10 elements, where the center 6 elements are equal to 1 and the others are
equal to 0. Remember that indexing in Julia starts with 1, not 0.

2.3.4 Problem 3.4: Working with Matrices

Using the rand() function, create a random 5x5 matrix. Then subtract the mean of each
column from that column.

2.4 Problem 4: Simulating a System

In this problem, you will put some of the previous pieces together, and also see how to draw
samples from probability distributions in Julia.
We will use the following model of shallow-lake eutrophification (Carpenter et al., 1999;
Quinn et al., 2017), which we will discuss in more depth later in the course. Let Xt denote
the phosphorous amount (dimensionless) in a lake at time t. Over the course of t = 1, . . . , T
years, the phosphorous dynamics in the lake are

Xt+1 = Xt + at + yt + Xq
t

1 + Xq
t

− bXt,

where at is the anthropogenic (controlled, point source) phosphorous input, yt is the natural
(uncontrolled, non-point source) phosphorous input, q is a parameter controlling the phos-
phorous recycling rate, and b is a parameter controlling the rate at which phosphorous is lost
from the lake.
For this problem, we will assume that at = a is a constant level of discharge and yt are
random variables distributed according to a log-normal distribution with log-mean µ and
standard deviation σ. The parameter values are:
Parameter Value Units

a 0.4 dimensionless
q 2 dimensionless
b 0.42 dimensionless
µ log(0.03) dimensionless
σ 0.005 dimensionless
T 100 years

2.4.1 Problem 4.1: Simulating Random Variables

Probability distributions in Julia are handled using the Distributions.jl package. If this
package is added to a Julia project (*e.g. included in a relevant Project.toml), we can load
it by including the following code. This code assumes that the Project.toml is locted in the
current working directory (which it will be for your assignment repositories), but the path
can be changed to any location as noted.
load the Pkg package manager
import Pkg

4

activate the project environment. The "." references the current working
directory. This can be changed to any particular path.
Pkg.activate(".")
instantiate the project environment. This installs any needed packages.
Pkg.instantiate()

load Distributions.jl
using Distributions

The above code will also work for any other Julia package. Typical Julia style is to load Pkg
and activate the project environment at the start of a document, while needed packages can
be loaded at the beginning or as needed.
Distributions.jl provides a consistent interface to work with probability distributions,
which is described in its documentation. For example, to work with a normal distribution
with mean 3.5 and standard deviation 1, we can create the distribution:
my normal dist = Normal(3.5, 1)

Then we can draw random values from this distribution. To draw one value, use
rand(my normal dist)

while to draw a vector of multiple values, use
rand(my normal dist, 100)

Notice that once the distribution is specified, rand doesn’t care what type of distribution it
is! This is a nice feature of Distributions.jl, and also allows it to cleanly play with other
libraries like StatsBase.jl and Plots.jl. Distributions.jl can construct many different
probability distributions, which are specified in the documentation.
Now, draw 100 samples from a log-normal distribution with log-mean µ and standard deviation
σ. These will represent the natural phosphorous inflows yt for t = 1, . . . , T .

2.4.2 Problem 4.2: Writing the Simulation Function

Next, let’s write a function which simulates the lake phosphorous dynamics. Write a simulation
function which takes as arguments the discharge level a, the vector of natural runoffs yt,
the phosphorous-cycling parameters b and q, the simulation length T , and an initial lake
phosphorous level X0, and which returns the time series of lake phophorous levels Xt.

2.4.3 Problem 4.3: Plot Phosphorous Levels

Use your function to simulate the lake phosphorous levels from t = 1 to 100 years, starting
from an initial concentration of X0. Make a plot of the lake phosphorous levels. Does
anything look interesting about this plot?

3 References

Carpenter, S. R., Ludwig, D., & Brock, W. A. (1999). Management of Eutrophication for
Lakes Subject to Potentially Irreversible Change. Ecological Applications, 9(3), 751-771.
https://doi.org/10.2307/2641327

5

https://juliastats.org/Distributions.jl/stable/
https://juliastats.org/StatsBase.jl/stable/
https://juliastats.org/Distributions.jl/stable/
https://doi.org/10.2307/2641327

Quinn, J. D., Reed, P. M., & Keller, K. (2017). Direct policy search for robust multi-objective
management of deeply uncertain socio-ecological tipping points. Environmental Modelling &
Software, 92, 125-141. https://doi.org/10.1016/j.envsoft.2017.02.017

6

https://doi.org/10.1016/j.envsoft.2017.02.017

	Overview
	Learning Objectives

	Problems
	Problem 1: Writing Some Basic Code
	Problem 1.1: Writing A Basic Function
	Problem 1.2: Referencing Output
	Problem 1.3: Making Plots

	Problem 2: Square root by Newton's method
	Problem 2.1: Justify Step 3
	Problem 2.2: Implement the Algorithm

	Problem 3: Working with Vectors and Matrices
	Problem 3.1: Generating Random Values
	Problem 3.2: Calculating a Mean
	Problem 3.3: Accessing Array Elements with Indices
	Problem 3.4: Working with Matrices

	Problem 4: Simulating a System
	Problem 4.1: Simulating Random Variables
	Problem 4.2: Writing the Simulation Function
	Problem 4.3: Plot Phosphorous Levels

	References

